可解释性人工智能(可解释性人工智能专业博士毕业就业)
本篇文章给大家谈谈可解释性人工智能,以及可解释性人工智能专业博士毕业就业对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、人工智能3.0时代是什么
- 2、对话清华大学孙茂松:第三代人工智能要处理“可解释性”问题
- 3、可解释AI,如何打开算法的黑箱?
- 4、何宝宏:对“AI可解释性”的解释
- 5、可解释的人工智能:说得清,道得明,信得过
- 6、人工智能有哪些发展趋势
人工智能3.0时代是什么
迄今为止,人工智能(AI)发展的特点是基于逻辑和计算不断迭代,从逻辑智能转向计算智能。逻辑智能的核心是基于逻辑的各种推理方法,专家系统和Lisp机是其发展的高峰。如果说逻辑智能是AI 1.0,计算智能就是AI 2.0,其始于控制论和认知计算,从20世纪80年代中期开始大规模地使用多层神经元网络,一直发展到现在的深度神经元网络,是当前人工智能的主要突破。人工智能3.0:人机与虚拟互动交互
我个人理解,AI 3.0是人机与虚拟互动交融的人工智能——“人机混合虚实互动的平行智能”,即处于边缘端的机械的、生物的智能,会产生有限的数据,再通过云端的云计算产生大数据,最后云计算把大数据变成精准的深度智能,再返回边缘端的生物体、物理体或机器人,就是Small Data-Big Data-Smart Data。这是一个循环的过程,是从边缘端的涌现到云雾端的收敛,这一“涌现收敛”也是复杂性科学的核心理念。AI 3.0的普及应用能够服务社会,而不是像某些专家宣称的那样会导致失业。它会让人类生活得更好,让人与机器各司其职——“人有人用,机有机用”,从专业分工,到人机分工,进而虚实分工,从而创造一个更加和谐的社会。例如,AI 3.0在无人驾驶中的体现就是“平行驾驶”——把有人车、遥控车、网联车、无人车等,用“平行车”统一起来。即各种实体车辆在路上行驶的同时,在平行的云端世界中,同样的虚拟车也在行驶,并通过云计算生成最优的行驶族历策略,从而控制实体车辆的运行。尽管有人车在速度、效率、安全性以及环境污染方面存在缺陷,注定它最终会被无人车取代,但我们不能急功近利,盲目普及无人车而付出惨痛的代价。我认为应该用二三十年的时间,从AI 2.0发展到AI 3.0,平稳过渡到无人车时代,这是普历穗简及无人车的唯一途径。未来智能的发展及真正推广应用还要解决两个问题。第一个问题是AI的可靠性,包括它的可解释性。我认为,AI的可解释性归根结底就是人工智能的可靠性。第二个问题是AI的合法性,尤其是在对个人隐私的保护方面,这已经引起了许多国家的反思和重视。当AI结合了区块链等技术,可以从技术层面解决这些问题。然而,用法律体系来规范AI系统的构建和应用才是关键,必不可少。
AI正在改变人类的未来。我们需要改变教育模式,培养面向未来的AI人才。就像传授“四书五经”的私塾教育无法培养现代工业所需要的新型人才,目前全世界的教育体制都落后于智能技术发展。对于未来的AI人才,我认为应着重培养3种思维:
首先是复杂性思维,因为AI本身就属于复杂性科学的范畴,要用整体的视角去看AI技术,这肢裤非常重要。其次是跨学科思维,因为AI要普及应用,就一定会涉及多学科、交叉学科和跨学科的知识。最后是系统化思维,AI真正要普及应用,取得可接受的可靠性、可接受的合法性,就一定要有系统思维,就像我们有“系统工程”一样,我们也要有“系统智能”
对话清华大学孙茂松:第三代人工智能要处理“可解释性”问题
正如人类会综合利用视觉、听觉、触觉、语言等信息,让人工智能(AI)从多角度、多模态、多学科学习自然语言也是清华大学人工智能研究院的目标与任务。
2019年7月1日,清华大学人工智能研究院第八个研究中心:自然语言处理与 社会 人文计算研究中心(以下简称中心)在校本部FIT楼举行成立仪式。中心主任由清华大学人工智能研究院常务橘告副院长、国家重点基础研究发展计划(973计划)项目首席科学家孙茂松教授担任。
7月3日,澎湃新闻()记者走进清华园,与孙茂松教授聊了聊这个名字格外长的中心成立的背景、担负的使命、以及当下人工智能的发展、困境与解决方法。
AI诗人、人工智能辅助法官与未来的诺贝尔经济学奖获得者
语言是人类智能的重要标志,在人类文明中的地位与作用毋庸置疑,自然语言处理,通俗地解释就是“让计算机学习人类语言”。清华大学新设立的中心旨在通过加强人工智能的基础研究及其与人文社科学科的交叉合作,建立更强大的机器用知识库,进而提升人工智能对语言的学习和处理的能力。
孙茂松认为,目前人工智能同 社会 科学和人文科学的结合有两个主要的桥梁,一个是狭义的数据,比如说金融市场上的数据,可根据数据来预测市场行为;另一个就是语言文字形成的文本,比如新闻、消息、用户在社交网络上反映观点和情绪的各种“短信息”等等。
基于人类语言文字这一桥梁,自2015年底起,他指导一个最初以两位本科生为主体的课题小组,通过深度神经网络的方法,让机器对全部古代诗歌进行“阅读”并“理解”,在此基础上,推出了会作诗的AI——“九歌”,使人工智能“跨界”到了文学创作领域。由于公众的关注与参与,到目前为止“九歌”已经产生了差不多400万首诗,“从古流传至今的诗歌总量估计达不到400万首,如果这么想,效果也还不错。”小组目前正在研究现代诗的生成,以期满足大众越来越多样的“作诗要求”。
社会 人文学科是一个很宽广的概念。除了文学外,今年以来人工智能研究院正在与清华大学法学院合作,模伍基在原有的法学基础上更多地加入计算与人工智能的成分。法学院越来越认识到,“计算法学”是未来法学研究的一个发展趋势。孙茂松也提到,近年来最高人民法院领导的案卷卷宗数字化、公开化是计算法学发展的一个重要基础。
当澎湃新闻()记者问未来是否会有“AI法官”时,孙茂松说,“应该会有‘人工智能辅助法官’。虽然本质上机器的能力肯定超不过优秀的法官,但机器确实有它的长处,比如说它可以快速阅读大量的卷宗,人有时候会判断有片面性、情绪上会有所波动、法官水平也会参差不齐,机器则不会。”
孙茂松指出,人工智能目前基于大数据的深层神经网络方法(也叫深度学习方法,见后)有可能为某些 社会 人文领域带来研究范式的改变。虽然清华人工智能研究院目前刚刚开始进行外汇兑旦谨换率预测的研究,但他认为人工智能与金融、经济的深度融合可望带来极具震撼力的成果,一旦深度学习方法被创造性地、系统性地应用到这个领域,甚至“这几年国际上能出一个诺贝尔经济学奖”。
针对金融、经济系统的高度复杂性,孙茂松认为,当把各类相关信息都涵盖进来,并且有高超的手段对这些信息进行“大一统”式的有效处理时,这个复杂系统的可预测性便会显著上升。他举了个例子,“蚂蚁王国有自己的一套运作规律,但这个规律有时会变得非常脆弱,因为可能突然来一个人,啪地来一脚,便给这个王国带来了灭顶之灾。仅仅从蚂蚁的世界来看,这个突发事件是不可预测的。但如果把人的因素包含进来,细致了解这个人的秉性,比如他是否是一个有爱心的人、是否是一名佛教徒等等,他的行为的可预测性就会大大提高,蚂蚁王国的不可预测性也会随之大大降低”。
在孙茂松看来,经典金融学或经济学的研究范式主要是依靠人的理性思辨和求解方程(无论是线性还是非线性方程)。但复杂且庞大的金融和经济系统里充满了不确定性,很多现象难以用方程显式地刻画。但深度学习方法具有高度的非线性性质,在大数据的驱动下,理论上它能隐式地模拟任何复杂的方程,更加有效地处理系统的不确定性。这就使得一种全新的金融学或经济学研究范式的产生成为可能。
把“黑盒子”变成“灰盒子”
“当代人工智能教父”、2018年图灵奖得主约书亚·本吉奥(Yoshua Bengio)认为,人工智能领域在近些年出现巨大变革要归功于 “深度学习”(deep learning)的出现。他在一篇名为《深度学习:人工智能的复兴》的署名文章中说,“近年来,深度学习已经成为了驱动人工智能领域发展的最主要力量,各大信息技术公司在这方面共掷下了数十亿美元的资金。”
本吉奥此前接受澎湃新闻()记者专访时表示,现有的自然语言处理系统掌握了大量的词汇量和语言转换的技巧,但是却并不理解句子的真正含义,机器“会犯一些非常愚蠢的错误,甚至没有两岁小孩的理解能力”。同时他认为,模拟人脑的神经网络以期能够实现类人工智能的机器学习技术,即神经网络技术对于新时代的意义是巨大的。
尽管意义巨大,但目前的深层神经网络系统存在着一个重大不足:给定一个输入,系统给出相应结果的深刻原因对人来说是不透明的,从这个意义上来说,它基本上是一个“黑盒子”。这就导致系统的稳健性会变大打折扣,系统的适用范围也会缩窄。当我们深究机器为什么犯错时(如机器翻译系统为什么把一句话翻成这样、而不翻成那样),机器却无法给出解释,“反正我就翻成这样,你看着用吧。”
此外,深度学习最擅长处理的是关联性:当输入“公鸡打鸣”这个词语时,它会自动联想到“太阳升起来了”这句话。这体现了一种关联性,但显然前者不是导致后者的原因。深度学习现在基本上没有因果推理能力。孙茂松说,深度学习只是在统计意义上“觉得”某两个东西是相关的,但两者之间到底有没有逻辑关系,它却浑然不知。
孙茂松进一步阐释,自然语言处理研究面临着同样的难题,实际上,“可解释性”是整个人工智能领域目前面临的困境,也是目前的国际学术研究前沿。研究者们正在努力让这个人工智能“黑盒子”至少变成一个“灰盒子”。孙茂松认为,在自然语言处理方面,知识库的构建或许是一个解决方法。以古诗词写作举例:“灞桥”后接“折柳”,深度学习应该能从诗库中捕捉到这个知识关联,但其它众多知识关联是否都能学到,就不好说了。但如果我们自觉地把跟“灞桥”相关的东西全预先列出来,如“灞水、驿站、销魂、断肠、长安、关中八景、李白、李商隐、孟浩然…”,建立起一个知识图谱,那么,机器就可以根据这个知识图谱比较自觉地去写诗,针对性更强,写诗过程也便具有了一定的可解释性。
根据人工智能研究院院长张钹院士的说法,人工智能在其发展史上已经先后经历了理性主义和经验主义两代。第三代人工智能应该是这两者的完美结合。解决可解释性问题,是其核心研究任务之一。
因为知识天然地具有一定解释性,知识库就带有一种可解释性。
“通专虽应兼顾,而重心所寄, 应在通而不在专”
以人工智能和大数据为标志的第四次工业革命到来之际,国内多所高校开始布局人工智能教育。2017年5月,中国科学院大学成立人工智能技术学院,成为我国人工智能技术领域首个全面开展教学和科研工作的新型学院;2018年,上海交通大学与南京大学先后建立了人工智能研究院与人工智能学院,南京大学还招收了首批人工智能专业本科学生。
而作为中国顶尖的高等学府,清华大学对顶尖人才培养一贯高度重视。2005年设立的计算机科学实验班(因其创始人、“图灵奖”唯一华人获奖者姚期智而得名“姚班”)是全国乃至全球领先的计算机人才培养的摇篮。一流的高等教育有责任助力计算机科学和人工智能达至下一个令人鼓舞的高度,更应该能够给这个时代带来颠覆性的影响。
那么,人工智能本科专业的设置是否必要?人工智能要不要在本科阶段就独立成系?
“清华主要的还是要稳,没有特殊的需求不要变,一变反而变乱了,两拨人可能无序竞争了。” 整体稳定、积极 探索 是清华大学在人工智能本科教育上的方针。
今年,清华大学在“姚班”之外新设立了“智班”,全称为“清华学堂人工智能班”,在计算机教育结构大体不变的前提下,这个规模不大的实验班将对人工智能人才、特别是顶尖人才本科阶段的培养进行深度 探索 。而人工智能研究院的工作主要定位在研究生阶段,特别是博士生阶段的培养。
在本中心之前,清华大学陆续成立了人工智能研究院基础理论研究中心、智能机器人研究中心等七个研究机构。
孙茂松说,这八个中心的核心力量主要对应着人工智能研究的“初心”,也就是研究人的感知和认知。感知最重要的通道是视觉和听觉,所以设立了视觉智能和听觉智能中心;而认知体现人的语言、推理、逻辑、学习的能力,所以设立了基础理论中心、知识智能中心和自然语言处理中心等。再向外 探索 就是智能人机交互与智能多模态信息交互乃至机器人的相关研究,中心和中心之间是紧密联系、相互合作的。
刚满一周岁的清华人工智能研究院已基本实现了“整合力量、统筹安排”的目标。孙茂松表示,接下来的两个中心会分别以“社交网络大数据”和“人工智能芯片”为关键词。
可解释AI,如何打开算法的黑箱?
随着以机器学习为代表的新一代人工智能技术不断朝着更加先进、复杂、自主的方向发展,我们的经济和 社会 发展都纷纷迎来了变革性的机遇。但与此同时,AI算法的透明度、可解释性问题也为公众信任、公共安全等诸多领域带来了前所未有的挑战。
1月11日 14日,“腾讯 科技 向善创新周”在线上举办。“透明可解释AI——打开黑箱的理念与实践”专题论坛即聚焦于此。论坛发布了《可解释AI发展报告2022》,随后由专家学者(见文末)共同参与了圆桌讨论。以下为整理文章:
可解释AI的概念共识
姚新:
大家在讨论AI算法的透明性和可解释性的时候,首先应该考虑三个W的问题——Who,What和Why的问题。
首先,到底是对谁讲透明和可解释?因为从科学研究来说,任何一个研究都必须透明,都必须可解释,否则这个论文是发不出来的。所以我猜过去讲透明性和可解释性,可能不是对科学家来说的可解释性或者透明性,因为对科学家的透明性和可解释性,不一定对大众透明和可解释。第二是解释什么?解释模型做出来的结果还是解释这个模型的工作原理。第三,解释总是有一个目的,目的是要追责还是理解这个模型的科学原理。
根据对这三个W不同的答案,会得出非常不一样的透明性和可解释性,相应的解决办法可能也完全不一样。不管怎样,考虑透明性和可解释性的时候,首先大家要有一个概念上的共识,使得我们知道我们是讲同样一件事情,而不是用了同样一个名词,大让宏家在不同的抽象层次讲不同的问题。
吴保元:
可解释是可信AI的重要组成部分,是可信的前提条件之一,但是相比于鲁棒性、公平性等可信特性,我觉得可解释不是独立存在的概念。就是姚老师刚才提到的,我们到底在解释什么?其他的特性都是有自己明确的数学定义,比如鲁棒性、公平性等,但是可解释性是没有的,因为我们单独提到它的时候,背后默认的更可能是对模型准确度的可解释性。或许这也可以解释为什么当前的可解释研究思路这么多,但是好像没有一个明确的框架,我觉得最主要的原因是它的解释对象不一样,没有办法统一到一起。
基于这种理解,我个人有一点小的想法,不应该把它称为可解释性,把它称为可解释力或许更准确。可解释性,大家可能误认为它是一种独立存在的性质;可解释力是一种可解释的能力,脊滑态就像我们说的理解力、领导力等等,它是一种手段,一种行为,一种操作存在,需要跟别的绑在一起。我觉得以后提到它的时候,应该准确地描述它是针对什么特性的可解释力,而不是笼统地说可解释性如何。
可解释AI的价值何在?
朱菁:
人们对于人工智能系统可解释性、透明性的要求,大致有四个层次:
第一个针对的是直接用户,用户需要了解人工智能产品、服务背后的原理是什么,这是建立可信任AI的重要基础。可解释AI,实际上支撑了可信任AI。
第二个层次,对于政策和监管部门,他们希望通过解释原理来了解人工智能产品的公平性、可问责性,归因的过程是我们进一步问责、追究责任的基础。所以,可解释AI也与负责任的AI、可问责的AI是联系在一起的。
第三个层次就是技术工程与科学层次,我们希望了解为什么某些算法能够成功,它成功背后的奥秘是什么,它的应用范围是什么,它能否在更大的范围内使用樱源这样一些算法或者是一些技术。
第四个是公众理解AI,如果 社会 大众大多数关心的话,他也能够在这方面了解相应的技术、系统大体的工作原理方式是什么。
何凤翔:
在现在的AI系统中,其实很多算法背后运作机制是未知的,是不清楚的,这种未知带来了未知的、难以管理的风险,包括安全性、鲁棒性、隐私保护、公平性等等。
这些点关系到了 社会 运转中非常关键、人命关天的领域,比如医疗、自动驾驶。这会带来很大的应用方面的困难,以及 社会 对AI的不信任。因为当AI算法运作机制是未知的时候,它的风险机制、风险大小、风险尺度就是未知的,我们就难以去管理风险,进而去控制风险。
可解释AI的挑战何在?
姚新:
原来我一个学生跟我做了一点关于公平性的工作,跟其他的文献发现的点非常一致,就是说模型的准确性和公平性之间是相互矛盾的。性能最好的模型从公平性的角度来说,按指标来测量不见得最好,你要把模型做得都是最公平,用指标来衡量的话,它的性能就会受到损失。实际上可解释性非常类似现在有各版的可解释性指标,但是要真正考虑这些指标的话,模型的性能总是会掉下来,要考虑在实际过程中怎么来找一个折中的方案。
吴保元:
针对可解释性本身的不可行、不可取,这也是值得我们思考的问题。比如说我们在研究犯罪率或者说疾病的传播率、发病率等,如果我们就拿现成的统计数据,比如在不同种族、不同地域采集的数据,很有可能会得出来某些种族或者某些地域犯罪率很高,这是因为数据采集的时候就是这样的。这样一来,如果可解释给出的类似结论被公开,可能会造成种族或者地域歧视。但实际上数据背后是我们在采集的时候没有采集其他特性,比如说为什么这个地域的传播率很高呢?很有可能是政府投入不足,或者说其他的因素。
所以这也启发我们可解释性本身它的可信性是什么,它的准确性,它的公平性,它是否忽略了某些特征,或者夸大了某些特征,它的鲁棒性,是不是把样本变化一点,它的可解释性截然相反,这些需要我们进一步思考。
另外,我跟很多研究可解释的专家聊过,他们的困惑在于现在的可解释性方法是不可印证的,甚至是矛盾的,这就引出了可解释性方法本身的可信度的问题。
何凤翔:
在我看来,理解深度学习算法的运作机制,大致有理论和实践两条路径。在理论方面,当前的研究无法完全解释理论上泛化性较差的深度模型为何能在多领域取得如此的成功。这种理论与实践的矛盾,就像曾经物理学中的乌云一样,反映出来了人们对于机器学习理解的缺失,而这是现在在理论上提升算法可解释性的一个难点。
而在实验角度上,很多实验学科中的做法可以作为对于机器学习研究的启发,比如说物理学、化学,以及刚才提到的医疗。比如说药物研发流程中的合格检验,要做双盲实验;在物理学、化学的研究中,对控制变量实验有严格要求。类似的机制是否能在AI研究中严格执行呢?我觉得这可能是另外一条路径。在我看来,现有的很多对于AI算法的解释是启发式的,而在关键领域中我们需要的是证据,这需要在理论和实验两方面做很多工作。
可解释AI如何实现?
朱菁:
前面很多专家都指出对于解释有不同的目标,不同的对象,不同的要求,所以实际上关于人工智能的可解释性问题可能是属于多元性的,就是要允许有多种不同层次不同方式的解释在这里面起作用,针对不同的领域、不同的对象,使用不同解释的方式。
当可解释性有它的局限或者和其他的目标、要求,需要做出权衡取舍的时候,我们想也可以从多个层面来进行替代性的,或者说是补偿性、补充性的策略。比方说针对监管部门,它对于可解释性的要求,和面向公众或者专家层面的,会有所不同,所以这个可以通过若干个层次,比如说监管部门的,行业的,市场的,以及传播普及层面的,对于安全性、鲁棒性要求更高一些,或者在专家层面上有更好的沟通理解,而对于 社会 公众而言,这里面就需要有一些转换,同时有需要一些权威部门,有公信力的部门,向 社会 做一些说明和认定。
姚新:
深度神经网络可以解决特别复杂的问题,我觉得现在大家用深度网络有一个原因,即所针对的问题本身可能就比较复杂。这是一个假设。假如这个假设是对的话,那么相应的可解释性不会特别好理解。因为需要对付这些复杂性,相应的模型就必然是要复杂。
所以我总觉得透明性、可解释性和性能之间是有一个固有的矛盾,如果现在把从技术上讨论的方向,是怎么找一个折中方案,根据不同的场景、可解释的目的,找不同折中方案,这样导致有可能会出来一些比较具体的技术,或者可以促进这些技术往落地的方向走。
吴保元:
我们尝试过一些从技术上可行的方案去量化各种可信特性,但是,要实现统一量化很困难,比如说公平性和鲁棒性都有不同的量化准则和指标。当把不同的特性简单组合到一起的时候很难优化,因为它们的准则是高度不对齐的,差异非常大,这就涉及怎么去对齐这些特性坐标。我认为想要找到一个全局坐标系是非常困难的。我们可以从局部出发,针对某种场景,比如医疗场景,首先把隐私性当做前提,在金融或者自动驾驶,我们把鲁棒性当做前提,然后再去研究其他特性,或许一步一步能够找到这种坐标系。
可解释AI的技术现状?
郑冶枫:
总体来说,因为我们现在还缺乏非常好的理论框架,所以可能针对问题,我们创造性地想一些算法,试图提高本身这个系统的可解释性,给大家举两个例子来说明一下我们天衍实验室在这方面的 探索 。
深度学习可能有千亿、万亿的参数,这对于医生来说太复杂了,他很难理解这个算法的底层原理,算法本身可能缺乏一个全局的可解释性。但是深度学习框架准确率非常高,所以我们不可能不用。而可解释性非常好的模型就是回归模型,这类模型主要的问题就是准确率太低。所以我们做了一个 探索 ,我们希望把这两个模型结合起来,它具有非常高的准确率,还有一定的可解释性,不是完全可解释性。
我们把这个混合模型用于疾病风险预测,就是根据病人历次的就诊记录,我们预测病人在未来6个月之内得某个重大疾病的概率,比如他得卒中的概率。病人每一次的就诊记录包含大量信息,这里面我们需要提取一些跟预测目标相关的重要信息,我们知道生物学习网络最擅长的就是自动特征学习。所以我们利用深度学习网络把一次就诊记录压缩成一个特征的向量,接着我们利用回归模型,把病人多次就诊记录综合起来预测未来6个月之内这个病人得脑卒中的风险。
杨强:
我们在审视各个算法和它对应的可解释性的关联问题上,发现一个有趣的现象,比方说在机器学习里面,深度学习就是属于效率非常高的,但是它却对应的可解释性很差。同样,线性模型没有那么高,但是它的可解释性相对强一些,树状模型也是,因果模型更是这样。所以往往我们确实得做一个取舍,就是我们在可解释这个维度和高效率这个维度,在这个空间里面选择哪一个点,现在并没有在两个维度都高的这样一个算法。
可解释AI的行业实践
郑冶枫:
各行业对可解释性和透明性的要求不同,我结合医疗AI这个场景给大家分享一下我的体会和理解。大家知道医疗在全世界范围内都是被强监管的领域,一款医疗产品要上市必须拿到医疗器械注册证,辅助诊断算法AI产品属于三类医疗医疗,也就是监管最严格的级别,所以我们要披露的信息很多,大致包括数据集和临床算法验证两方面。前者主要强调数据集的公平多样性和广泛覆盖性,后者则重视披露我们的算法真正在临床试验中、真正临床应用的时候它的性能。
此外,我们的测试样本也需要有很好的多样性,覆盖不同医院,不同区域,不同病人群体、厂商、扫描参数等等。临床实验更加严格,首先我们要固化算法的代码,在临床试验期间是不能改代码的,因为你不能一边做实验一边改代码,这就失去了临床试验的意义。
所以医疗AI的监管是非常强的,药监局需要我们披露很多信息,提高医疗AI产品的透明性,它有非常严格甚至苛刻的书面要求。因为我们知道智能学习网络天然不具有很好的解释性,虽然你可以做一些中间增强,可以一定程度上改善这些事情,监管也可以理解这个解释性差一点,正因为解释性差,要求的透明性就越高。
何凤翔:
我觉得提供AI系统的说明书有两个路径:第一个路径从生成AI系统的过程出发。这一点现在有一些实践,比如开源代码,说明使用了什么数据,数据是如何使用的、如何预处理的。这会提升人们对AI的信任和理解,这也像刚才郑老师提到,申请医疗相关的资质的时候,我们需要把生产细节汇报给相关机构。
第二种方式就是从生成的AI系统所做出的预测以及决策的指标来入手做算法的说明书。比方对AI系统做一些测评。对于刚才我们提到的指标,包括可解释性、鲁棒性、准确性、隐私保护、公平性,找到一些比较好的量化指标、找到一些评测算法,把这些指标作为AI系统的使用说明书。
可解释AI的未来发展
杨强:我期待在未来人工智能的治理,在人工智能,人和机器这种和谐共存,共同解决我们要解决问题的前提下,会越来越成熟。我是非常看好这个领域的。
朱菁:我期待这个领域进一步的探讨,不同领域的学者都能够参与进来。比如说像我自己做的主要是哲学, 科技 哲学。在 科技 哲学,实际上对于解释有将近一百年的积累和 探索 ,这里面应该有很多可以发掘借鉴的资源,参与到目前这样一个很有意思很有挑战性的话题里面。
何凤翔:AI本身是一个跨学科领域,它可能会用到很多数学、统计、物理、计算机等各个知识的领域,今天提到的很多点,包括隐私保护、公平性,很多也是来源于人文学科、法律、 社会 学这些方面。所以这就意味着研究可信AI以及可解释性等等方面会需要各个学科领域的人合作起来一起去做的一件事情,会非常需要大家的通力合作,共同推进这个领域的发展。
姚新:对于做研究来说,我希望将来可以有一点聚焦的讨论。我刚才讲的3W,到底我们要解决透明性、可解释性的哪一部分,对谁而言。假如对医疗而言,是对法规的制定者来说还是对医生来说,还是对病人来说,还是对这个系统的开发者来说?我觉得在这里面有非常多可以发挥自己的想象力和能力的地方。
郑冶枫:对算法人员来说,当然我们希望将来科学家们找到非常好的,具有良好可解释性,同时准确性非常高的算法,真正做到鱼和熊掌兼得。
何宝宏:对“AI可解释性”的解释
本文核心假设:用混沌理论,可以解释AI的不可解释性。
有广义的解释和狭义的解释两种。
广义地,指提升AI算法、产品和服务做出决策时的透明度和公平性,以防算法偏见和打开算法黑箱,助力用户的信任和监管的合规性。这种理解方式多见于 社会 、法律和政府层面的各类文件,比如联合国UNESCO的《人工智能伦理建议书》等。
狭义地,指一个端到端的AI深度学习算法,改变其算法模型中的任意一个权重、结点或层数,可能都会对整个模型的表现产生难以预测的影响。即使是模型的设计者和训练者,也无法预先知道。因此,深度学习也被戏称为“调参学”、“玄学”,被说科学就连工程学都算不上,因此AI算法工程师也被戏称为“炼丹师”。
如果说广义“可解释性”,面向的是大众和监管机构的,已经超出了AI本身,针对的是算法黑箱。那么,狭义的可解释性,则面向的是学界和产业界,仅针对深度学习的“算法幽灵”。
牛顿力学将人类带到了一个确定性的世界,但量子力学又将人类又带到了不确定的概率世界。对应地,计算机和传统算法将数字世界带到了一个确定性的时代,而大数据和深度学习算法又将数字世界带到了“不可解释”的“概率”新阶段。
这友槐让我想起了近30年来才兴起的混沌理论。量子力学质疑微观世界的物理因果律,混沌理论否定了包括宏观世界拉普拉斯(Laplace)式的决定型因果律。
这个理论可以用来解释AI的不可解释性。
机器只能处理“关联关系”而无法理解因果关系,更无法判断学指告闭习结果正确与否,工程师调参基本靠直觉,是否已经学习到中“真经”也是靠人的判断,因此学习结果正确只是概率问题,“碰巧”正确而已,因此稍微换下参数环境就又不可预期了。
混沌理论认为, 许多自然现象即使可以化为单纯的数学公式,但是其行径却无法加以预测。
用于解释AI的不可解释性,机器学习被化简为单纯的算法模型,但深度学习的行径却无法加以预唯裂测。
深度学习初始条件或权重十分微小的变化和调整,经过多层网络、多结点的不断反馈和放大,对其未来状态会造成极其巨大的差别。
混沌的发现,提醒我们对因果关系需要再认识。过去认为,简单的原因必定产生简单的结果,复杂的结果必然有复杂的原因。
但混沌理论告诉AI,在一个复杂的反馈系统中,简单的参数调整也可以产生复杂的结果,仅仅知道确定性的算法模型,不等于能够预测AI的行为。
可解释的人工智能:说得清,道得明,信得过
近年来,可解释的人工智能(Explainable AI)逐渐成为学界讨论的热门话题。话题的中心是可解释性,这表明人们开始不满足人工智能的应用,而开始追问人工智知宏能为什么那么成功,或者为什么在某些场景下做出错误决策。随着人工智能的广泛应用,理解人工智能的决策过程越发重要。
如果将人工智能应用到一些敏感领域,例如,辅助医疗、国家决策制定、金融投资、智能驾驶,只有理解人工智能的决策过程,人们才搭信册会信任人工智能,否则人与人工智能将陷入猜忌和敌对关系。
从关注应用到关注应用背后的具体运作机制,这是一种从技术思维向科学思维的转变。然而,我们回顾人类对世界的理解模式演变历程,发现这是一种非常独特的转变过程。
从十六十七近代科学革命以来,理解总是先于应用。而在这之前,虽然技术比科学出现得更早,但是那时的技术复杂程度绝没有超出人们所能理解的程度,即使是复杂的技术也是由多个功能清楚的简单装置组合的产物。所以在深度学习出现之前,人类还没有遇到过有效但不知道为什么有效的技术。这就为人工智能的进一步和深一步应用埋下了祸根。
为什么我们那么在意人工智能的可解释性呢?从实践应用角度,这关乎我们了解这一技术的程度问题,而从人性角度,这关乎人与技术的信任问题。在技术伦理领域,有一个传统的话题,那就是技术是善的还是恶。但是,对于人工智能,人们甚至没有能力谈论它的善恶,因为人们压根不了解人工智能具体的决策过程。如果我们面对的是一种全新的文明,不知道他们的行为规范,更不知道他们的决策过程,那么讨论他们来到地球是与人类做朋友还是侵占地球,这完全是一种奢望。现在的人工智能就是我们所面对的全新的文明。
而之所以我们关注可解释性,则是来自人性对确定性的渴望。一直以来,人类都在寻找关于世界和自我的理解,也正是这种理解的冲动才成为科学起源的基础。神话、巫术、宗教、科学,它们本质上都是解释系统。
为什么人类会有解释冲动呢?有研究儿童认知的学者认为人类就是一种解释机器,或者人类天然具有解释器官,因此从演化的角度可以说明解释对人类的生存价值。当然最初的解释模式不可能像现在一样是一套语言表证系统,但是在前语言时期的解释是一种操作主义和基于共变关系的因果理解,而解释系统一开始就是原因。
因此,寻找解释就是寻求原因。而知道原因能够极大的提升人类祖先的生存优势。一旦掌握原因(不管是真的还是虚假的原因),人类就可以提前模拟自己的操作所带来的结果,也可以设想出现原因之后的世界状态的变化,从而能够更好地谋篇布局,适应自然。
这种对因果关系的诉求在意识层面就表现为对确定性的渴望。凡事问个“为什么”,问的是现象背后的实在世界的状态。现坦旦如今,人们关注可解释的人工智能实则还是对确定性的渴望。只有说得清、道得明的技术,人们才能信得过,因为这满足了人们对确定性的诉求。
[img]人工智能有哪些发展趋势
人工智能技术的发展一直处于快速变化的状态,以下是一些可能的人工智能发展趋势:
深度学习:深度学习是人工智能的核心技术之一,它已经在许多领域取得了成功,并且仍在不断发展。未来,深度学习可能会进一步提高模型的准确性和效率,并实现更广泛的应用。
自然语言处理:自然语言处理是人工智能的重要应用之一,未来可能会涉及更广泛的语言和语境,并且更好地理解和生成自然语言。
边缘计算和物联网:随着物联网和智能设备的普及,边缘计算和橘肢搭人工智能的结合将成为一种趋势,将提供更快的响应和更好的用户体验。
人工智能和人类的融合:人工智能技术可能会进一步融合到人类生活中,包括虚拟助手、智能家居、人机交互等饥启。
自主学习和自我适应:未来,人工智能系统可能会变得更加自主和自我适应,可以根据环境和任务的不同自我学习和改进。
多模态人工智能:多模态人工智能将不仅圆拿仅涉及语音和图像,还将包括触觉、味觉、嗅觉等感官模式的处理和应用。
透明性和可解释性:在人工智能技术被越来越广泛地应用的同时,透明性和可解释性也成为人工智能发展的重要趋势。如何让人们理解和信任人工智能系统,已经成为人工智能技术发展的重要议题。
总之,人工智能技术的发展将继续推动我们社会、经济、科技等各个领域的变革。
关于可解释性人工智能和可解释性人工智能专业博士毕业就业的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。